Proc. RECOMB 2002, pp.127-136. April 2002, Washington, DC. 1

Analysis of gene expression profiles: class discovery and leaf ordering

Chris H.Q. Ding
NERSC Division, Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720
chqding@lbl.gov
(Extended Abstract)

Abstract

We approach the class discovery and leaf ordering
problems using spectral graph partitioning method-
ologies. For class discovery or clustering, we present
a min-max cut hierarchical clustering method and
show it produces subtypes quite close to human
expert labeling on the lymphoma dataset with 6
classes. On optimal leaf ordering for displaying the
gene expression data, we present a sequential or-
dering method that can be computed in O(n?) time
which also preserves the cluster structure. We also
show that the well known statistic methods such as
F-statistic test and the principal component anal-
ysis are very useful in gene expression analysis.

1 Introduction

Clustering analysis of DNA microarray gene ex-
pression proflies is among the first steps in under-
standing the activities of genes during biological
process and their responses to certain desease con-
ditions. By grouping tissue samples into homoge-
neous groups that correlates highly to particular
macroscopic phenotypes such as different cancer
types or other clinical syndromes [17, 1], more sys-
tematic characterization can be developed and new
subtypes discovered.

Severl clustering methods applied to gene ex-
pressions data has been studied, the hierarchical
agglomerative methods [14], self-organized maps
[24, 17], simulated annealing [15], graph partion-
ing methods [5], [22] [25]. However, many of these
methods are more focused on clustering genes; when
clustering tissue samples, many of them applied
only to small number of phenotypes, typically 2~3.

In this paper we present a min-max cut hierar-
chical clustering algorithm and applied it to several
publically available gene expression datasets. The
effectiveness of our algorithm is demonstrated on
the lymphoma dataset [1] where our algorithm can
correctly identify 6 phenotypes based on standard
correlation alone. We also found out that several
samples of DLBCL type have high correlation with
T-cell lines type, differ from the original study [1].
(see section 6).

As the second main contribution of the paper,
we present an optimal leaf node ordering algorithm.
In both hierarchical agglomerative clustering and
divisive clustering, the clusters and the members of
clusters contained in the leaf nodes of the binary
hierarchical tree are often displayed in linear order.
Biological and clinic studies are often performed in
the context of this leaf node linear ordering, mak-
ing it significant part of the clustering analysis. In
Eisen et al.[14], the leaf nodes are ordered based on
the average expression levels and patches of visible
structures. In self-organizing maps [24], clusters
are organized as a 2D topological mesh which does
not always match those of hierarchical clustering
method. Alon et al [15] used similarity between
nodes and their parent’s siblings to order the leaf
nodes. Most recently, an optimal ordering method
based on similarity of adjacent nodes is proposed
by Bar-Joseph, et al.[3].

Here we propose a new optimal ordering ob jec-
tive function that both maximizes the similarities
on adjacent nodes, but also minimizes similarities
on large distance pairs of nodes. We then present
an efficient algorithm to compute an approximate
optimal ordering based on this ordering objective.
This algorithm can also compute an optimal or-



dering that preserves the clustering structure. We
apply this algorithm on the lymphoma datasets to
illustrate the usefulness of our approach (see sec-
tion 7).

The min-max cut algorithm follows a min-max
clustering principle — tissue samples are grouped
into clusters such that the similarity between clus-
ters are minimized while similarities within each
clusters are maximized. It is a new development in
spectral graph partition [11, 16, 20] that makes use
of the eigenvectors of Laplace matrix of a graph. It
is more effective in finding balanced clusters than
earlier algorithms. The optimal leaf node ordering
algorithm uses a spectral formulation that is closely
related to the spectral graph partitioning. Due to
widely available software for efficient computation
of eigenvectors (LAPACK, ARPACK, etc.), these
methods can be efficiently implemented on a vari-
ety of computer architectures.

In this work, we use F-statistic for gene se-
lection and show it is effective method. We also
use principal component analysis for preliminary
understanding of the data (see Figures 3 and 1).
These well established statistical methods are quite
useful in gene expression profiles analysis.

2 Gene selection

Of the thousands of genes measured in a microar-
ray experiment, many of them show little varia-
tions across the tissue samples. and therefore are
not useful in distinguishing different phenotypes.
Furthermore, many genes are highly correlated, ex-
hibit a large degree of redundancy. Selection of
those informative genes [17] which show large vari-
ance among the targeted phenotypes is an impor-
tant part of clustering analysis. There exist sev-
eral methods for gene selection, from the simple
t-statistic like tests [15, 17] to more sophisticated
ones, such as information gain and Markov blan-
ket. In this paper, we emphasizes the multi-cluster
nature of the problem and use the F-statistic test
which is a generalization of ¢-statistic for two class.
Given a gene expression across n tissue samples
g = (91,92, ", 9n), the F-statistic is defined as

F=1> mlge —9?/(K =1 /o*, (1)
k

where g is the average expression across all sam-
ples, g is the average within class C, and o2 is
the pooled variance:

o? = lZ(nk -1) O']%‘| /(n—K)

k

where ny and oy, are the size and variance of gene
expression within class C}. For K = 2,

F:tZ, ;= ning 91—!]27 (2)
\/ n1 + no o

F-statistic reduces to {-statistic.

We pick genes
with large F-values or t-values. (If gene expres-
sions follow Gaussian distribution, F-value of genes
follow F(K —1,n—K) distribution and we can com-
pute p-values and confidence levels.) F-statistic for
gene selection is used a classification study [13].

3 Similarity metric

For automatic class discovery, the association or
similarity between tissue samples are the main fac-
tors. We wish to group tissue samples into clusters
such that similarities between clusters are mini-
mized and similarities within each clusters are max-
imized. There are a number of ways to define the
similarity. A popular method is to measure the
Pearson correlation [14, 15] ¢(%, 7) between two tis-
sue samples ¢, j, and define the similarity as

s;; = exp(e(1,7)/{c)),

where (¢) is an average correlation between nearest
k neighbors. Another method is to measure the
Fuclidean distance d(7, j) and define

855 = eXP(—d(iaj)/<d>)7

where (d) is some average distance between nearest
k neighbors. These similarity metrics are generic
and are used in wide areas of applications. There
are, however, more detailed modeling of similar-
ities or weights based on statistical properties of
the underlying populations [22].

4 Hierarchical divisive clustering

Many current research on gene expression cluster
analysis uses hierarchical agglomerative clustering



methods [14, 1] which builds clusters from bottom
up, gradually merging clusters into bigger and big-
ger clusters [12].

Hierarchical divisive clustering follows a top-
down approach. It first partitions the samples into
two clusters, and then recursively partition each
leaf clusters into more clusters. This approach
naturally uses a graph partitioning method. The
similarities between all pairs of samples are first
computed and stored in a matrix W = (w;;). W
then defines a weight matrix, or the adjacency ma-
trix of an undirected graph with each node as a
tissue sample. (Here we focus on clustering tis-
sue samples. One can equivalently consider clus-
tering genes according their responses to all tissue
samples or other experiment conditions). Cluster-
ing becomes partitioning the graph into subgraphs
based on certain objective or cost criteria. Cluster-
ing gene expression data using graph partitioning
approach has also been studied in [22, 25].

4.1 Min-max cut

We briefly introduce the min-max cut graph par-
tition and clustering method very recently devel-
oped for internet newsgroup clustering [10]. Given
a weighted graph G with weight matrix W, we
wish to partition it into two subgraphs A, B using
the above mentioned min-max clustering principle.
The similarity or association between A, B is the
sum of weights between the two clusters,

Yoo owiy, (3)
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sim(A, B) = s(A,B) =

The similarity or association within a cluster is the
sum of all edge weights within A or B:
sim(A, A) = s(A,A), sim(B,B)=s(B,B). (4)

The clustering principle requires minimizing s(A, B)

while maximizing s(A, A) and s( B, B) independently

at the same time. These requirements are simulta-
neously satisfied by the objective function,

s(A,B) s(A,B)
Mew = 0 Y (B B) (5)

JMeut s called min-max cut (Mcut) objective[10].

The solution of partition problem can be repre-
sented by an indicator vector q, where the element
of q on node 7 is

_J a if
“=N —p if

where a and b (0 < a,b < 1) are two constants.
Finding the optimal partition is NP-complete. An
effective solution is the following. First, one can
show that

1€ A
1€ B (6)

T D —
m&n IMeut(A4, B) = m&n %, (7)
subject to q"We = qTDe = 0, where D = (d;)
is a diagonal matrix and d; = 3_; w;; is the degree
of node i and e = (1,---,1)T. Second, we relax
¢; from discrete indicators @ and -b to real number
in (—1,1). The solution of q for minimizing the
Rayleigh quotient of Eq.(7) is given by

(D—W)q=(Dq. (8)

The solution to this generalized eigenvalue prob-
lem is the second eigenvector qg, called the Fiedler
vector. Third, we sort the Fiedler vector q to es-
tablish a linear search index order. Fourth, using
the linear index order, given any cutpoint %.,;, we
partition the graph into two subgraphs (clusters):

A= {Q'z | ? S icut}a B = {QZ | T > icut}-

A contains all nodes left of the cutpoint 7.,; and B
contains all nodes on the right. We search for the
cutpoint i., such that Jyeut(A, B) is minimized.
The corresponding A and B are the final clusters
of the Mcut algorithm.

This Mcut algorithm is the latest development
along the line of spectral graph partitioning that
is based on the properties of eigenvectors of the
Laplacian matrix L = D — W [11, 16, 20]. Besides
the min-max cut objective function, the ratio cut
objective, Jreut = S(A4, B)/|A| + s(A, B)/|B| is
proposed earlier [6, 18] to balance the sizes of the
partitions. The normalized cut objective,
INeut=5(A, B)/s(A,G)+s(A, B)/s(B,G), proposed
in [23] attempts to balance the volumes of the par-
titions (s(A, &) is the volume of subgraph A [7]).
In contrast, Jyewt balances within-cluster similar-
ity. Both theoretical analysis and experiments on



internet newsgroup data sets indicate [10] Jafcut
gives more balanced clusters while Jgeut and Jyeut
sometimes cut a small subgraph away from a large
graph resulting in unbalanced clusters. Note that
although Jreut, /Ncut and Jueat b jective functions
are first proposed based on appropriate intuitions,
they can also be obtained automatically as the
eigenvalues of the Fiedler vector in perturbation
analysis [9]. This further justifies using the Fiedler
vector for finding the (approximate) optimal par-
titions based on these objective functions.

4.2 Recursive Clustering

Once a cluster is partitioned into two clusters, we
can further partition each of them using the same
method. This process is repeated several times and
a binary partition tree is established where the each
node contains a cluster during the process.

A stopping criteria is necessary to stop the di-
visive process. The Mcut objective provides such
a criteria. For a cluster G on the leaf node, we
compute the Fiedler vector q, find the optimal cut,
and obtained J,, = min Jyveut(q) value. If J,, is
large, the overlap between two resulting subclus-
ters is large in comparison to the within-subcluster
similarity, hence cluster Gx should not be further
partitioned. We set

Jstop = 107

as the threshold for J,, in our experiments.

The complete clustering algorithm is:

1. For the current leaf node Gy, solve Eq.(5) for
the second lowest eigenvector q.

2. Sort q. Find the cutpoint iz with min(Jyicut)-

3. If min(Jyeut) < Jstops cut Gy into two chil-
dren clusters Ay, Br. A, and Bj become
new active leaf nodes on the binary tree. If
min(Jyeat) > Jstop, Gk becomes a dead-end
leaf node.

4. Examine all active leaf nodes until none of
them can be further partitioned.
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Figure 1: Leukemia dataset as shown in 2D space
of the first two principal components. (A) All genes
are used, i.e., we used PCA to reduce the data from
the original 7070 dimensions to 2 dimensions. (B)
Only 50 selected genes are used in PCA.

5 Analysis of Leukemia subtypes

The leukemia dataset of Golub et al [17] is well
studied. Here we study the training dataset: 7070
gene expressions of 38 tumor tissue samples. The
goal here is to see if we can automatically detect the
two phenotypes of the cancer: acute lymphoblas-
tic leukemia (ALL) and acute myeloid leukemia
(AML). To gain insight, we perform the princi-
pal component analysis (PCA) and show results on
the first two principal components in Fig.la. One
can see the structure of two phenotypes. The two
classes overlap substantially when all 7070 genes
are used. We used the t-test statistic criteria to
select 50 genes (shown in Fig.2). Using 50 selected
genes, the two classes separate clearly (Fig.1b).

We perform the cluster algorithm on the dataset
using Pearson correlation. The cluster result using
all 7070 genes is shown in the two-way contingency
table (Table 1). We use the simple Q-accuracy
[21, 8] (sum of the diagonal elements divided by
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Figure 2: The t-values (Eq.2) for all 7070 genes
in the Leukemia dataset of Golub et al [17]. Gene
indices are reordered according to t-values. We se-
lect 25 genes with largest positive ¢-values and 25
genes with largest negative t-values.

the total number of samples).

Cy Oy
AML | 10 1
ALL | 9 18

Table 1: A contingence table summarizes the dis-
covered clusters Cy,Cy using all 7070 genes. The
accuracy is ¢ = (10418)/(104+14+9+18) = 0.737.

Using the 50 selected genes, the clustering re-
sults (contingency table T') and the accuracy are

1 0
T= [2 25], Q = 0.947.
Only two samples of the ALL class (the two points
with the A symbol in Fig.1b instead of the v sym-
bol for the rest of ALL samples) are incorrectly
clustered into the AML class. Clearly, these two
samples are on the boundary between the clusters.
We note that if we use the Fuclidean distance op-
tion to define the similarity metric, these two sam-
ples will be correctly clustered, while one sample
from AML class (the point nearest to ALL samples
in Figure 1b) is mis-clustered into ALL class. The
accuracy will be = 0.974. Thus our clustering al-
gorithm performs well, and from the PCA analysis
we understand the origin of clustering errors.
This dataset is studied in [25]. The CLIFF al-
gorithm begins with 360 genes to perform iterative
feature selection and clustering, to graduately re-
duce the number of genes. We perform the cluster-

ing using 360 genes selected by the ¢-statistic and
the results are identical to that using 50 genes, al-
though in 2D PCA space, the two classes mix more
than the case of 50 genes (not shown). This indi-
cate the effectiveness of the t-statistic in gene se-
lection.

6 Analysis of Lymphoma classes

This dataset contains 4029 gene expression of 96
tissue samples from Alizadeh et al.[1]. Using bio-
logical and clinic expertise, Alizadeh et al classify
the tissue samples into 9 classes as shown in Figure
3. Because of the large number of classes and also
highly uneven number of samples in each classes
(46,2,2,10,6,6,9,4,11), it is a reletively difficult
problem. We use F-statistic to select 200 genes for
this study as shown in Figure 4. We also ignore 8
tissue samples belonging to classes C2, C3, and C8
because (i) the number of samples in these classes
are too small. (ii) as discussed in [1], C2 (germinal
center B), C3 (lymph node/tonsil) are very close to
C1 (DLBCL) — in fact, they are clustered together
in [1]. Therefore, we focus on 6 largest classes of 88
samples. Using PCA, we first examine the samples
in the first two principal components as in Fig.3.
The structure of 6 classes are visible in Fig.3. This
motivate us to further study the automatic class
discovery using the clustering algorithm.

We perform the clustering algorithm this dataset.
The partition tree is shown in Figure 5. The clus-
tering results (contingency table) and accuracy are
listed below:

Q = 0.921.

These results are quite reasonable for this rela-
tively difficult problem with such a large number
of classes and varied sizes of each class.

We independently verified these results by check-

ing the sample-sample correlations. Samples OCI-
Ly3, OCI-Ly10, DLCL-0042, DLCL-0017 of C1 class



0.5

T T T T T
C1: Diffuse Large B Cell Lymphoma (46)

\
- C2: germinal center B (2) (not used)
- C3: lymph node/tonsil (2) (not used)
04H B C4: Activated Blood B (10) B
: O Cb: resting/activated T (6)
+ C6: transformed cell lines (6)
& C7: Follicular lymphoma (9)
- C8: resting blood B (4) (not used)
0.3 + C9: Chronic lymphocytic leukaemia (11) 7
u]
02 v o i
o @
v Vv o B 7,
v % N4 ¢}
0.1f v fe) B
v Vv
v v Vo OO fe)
v \ v v v
v I + N 4
or v v n Yot b
v BN
v v * %
\
v v i i V)
-01f vV * 4
o @
+
Vv
¥ v
-0.21 b
\
1 1 1 1 1 1 1
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 3: The lymphoma dataset of [1] in PCA
space, using 200 genes selected based on F-statistic
(class labels are according to Fig. 1 of [1]).

have high correlations with samples in C6 class
and have low correlations with the rest of samples
in C1. These samples should belong to C6 if the
sample-sample correlation is the only factor in de-
termining the class information. These results do
not change if we use 100 genes, and therefore re-
flect the inherent structure of the gene expression
data. Further studies are necessary to understand
why they differ from the expectations of human
expertise.

One of the main results of [1] is using the gene
expression profiles to further detect two subtypes of
DLBCL which are previous unknown and are more
subtle to detect. Indeed, using our algorithm, we
can further split DLBCL samples into the Germi-
nal center B-like DLBCL and the Activated B-like
DLBCL, although the Jyicqt value are larger, in-
dicating these two subtypes mix more than other
phenotypes (see Figure 5).
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Figure 4: The F-value (Eq.1) for the 4029 genes in
the lymphoma dataset of Alizadeh et al. [1]. We
select 200 genes with largest F-values.

7 Ordering tissue samples

Once the cluster structures are discovered (and also
before that), very often we need to order the genes
or tissue samples in a linear order such that ad-
jacent tissue samples are similar and samples far
away along this sequential order are different. This
is quite useful both for displaying results and for
further inspection and study[14, 15, 3]. Here we
present a new ordering objective function and an
efficient algorithm to compute an approximate op-
timal solution. This optimal leaf ordering also pre-
serve cluster structure, i.e., all nodes within a clus-
ter should be adjacent to one another.

7.1 Leaf ordering objective function

In [3], the objective of leaf node ordering (defined
by index permutation # = (71,---,7,) ) is to in-
sure that adjacent nodes are similar. This is achieved
by maximizing the sum of similarity between adja-
cent nodes:

max Jia(7), Ji(1) = Y snngy (9)

However, this objective ignore the similarity be-
tween larger distance nodes. To see this point, we
list the different distances of a 5-node graph below:

01 2 3 4
01 2 3
01 2
0 1
0
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Figure 5: The binary partition tree outlines the
divisive clustering process. Each node contains a
current cluster, whose content, the number of sam-
ples in each class are given, e.g., 46C1 means 46
samples of class C1. The six leaf nodes contain the
final 6 clusters discovered by the Mcut algorithm.
The min(Jyicut) value for each divisive partitioning
is also shown. We also attempted to further parti-
tion the DLBCL cluster (39C1) into two subtypes,
21C1 and 18C1. The min(Jyeut) is 1.147, slightly
bigger than Jg,, = 1. We verified that the 21C1
cluster corresponds to GC B-like DLBCL and the
18C1 cluster corresponds to Activated B-like DL-
BCL (see Figure 3 in [1]).

There are four d = 1 pairs, and their similarity
is contained in J;—;. There are also three d = 2
pairs. We believe the similarities on these pairs
should be smaller than on those d = 1 pairs, if
the final leaf order is meaningful. Further more,
there are two d = 3 pairs and the similarities on
these pairs should be smaller than both d = 1 and
d = 2 pairs. This consideration goes all the way to
d = n—1 pair. All these considerations (except for
d = 1 pairs) are not taken into account in the Jj=;
objective.

For this reason, we believe a more appropriate,
distance-sensitive, objective function in leaf node
ordering is the following

min Ja(m), Ja(m)= ”z_: 02 J—p(m) (10)
=1

where

Jazo(T) = Srimig (11)

k3

Here we penalize large distance similarities with
larger weights to ensure that the larger the distance
between a pair of nodes is , the less similar this two
nodes are. We may rewrite the distance-sensitive
objective function J; as

n—1

Jd(ﬂ') =4s+ [Z(KZ — 4)Jd:g(ﬂ)] — 3Jd:1(71').

£=3

where s = ;. s;; is the total weight of the graph
which is a constant. Therefore, minimizing J; is
equivalent to simultaneously maximizing adjacent
similarities Jg=1 and minimizing large distance sim-
ilarities.

7.2 Approximation algorithm

An exact algorithm to find the optimal solution
is NP-complete. However, an efficient O(n?) al-
gorithm exist to compute an approximate solution
to minimizing Jy. First, we note that J; can be
written as

Ja(m)= 5 Y s, (i = )%
TG Ty
In the summation, replacing m; by ¢ and ¢ by 7r2»_1
(=1 is the inverse permutation), Jy(7) remains
identical. With shiting and rescaling, we have

2
n? 7rf1 _ n41 71—,_1 _ n+tl
J -2 i 2 2 2
d(ﬂ') 8 ZS sJ ( TL/2 n/2

0]

For simplicity, we define

-1 n+1
T, — T 1-n 3—-n

P = 6{ ) 5Ty }

n/2 n n n

Note that

> sij(pi— i) = sij(pf + pF - 2pip;)

i B
=" 2pi(diibi; — sij)p; =2p" (D — S)p  (13)
]

where é;; = 1if ¢+ = j; 0;; = 0 otherwise. There-
fore, the inverse index permutation 7~! is obtained



by minimizing p” (D — §)p for p; taking those dis-
crete values of Eq.(12) in (=1, 1).

So far everything is exact. The critical approx-
imation step here is that we relax p; from these dis-
crete values to continuous values in (—1,1). With
this, p (D — S)p can be minimized by solving an
eigenvalue problem.

Since s;; > 0, from Eq.(13), pT(D — S)p >
0 and trivial solutions such as po = 0 or pg =
e will minimize p”(D — S)p: pJ (D — S)po = 0.
Therefore we need to impose a constraint on the
normalization of p and other constraint so that p #
e. These two constraints are

p! Dp = const, p? De = 0. (14)
These constraints can be simultaneously satisfied
with the scaled ordering objective

p'(D - S)p.

Jp =
p" Dp

(15)
The above approximation by relaxation of discrete
permutation indicators for computing the optimal
solution was first proposed in different forms in
[19]and [4]. One can see it has a close connection
to spectral graph partition (Eq.7).

Clearly, the solution to the minimization prob-
lem is the eigenvector of (D — S)p = ADp. The
lowest eigenvector is trivial p; = e with Ay = 0,
which should be discarded. The correct solution is
the second lowest eigenvector pg, which automati-
cally satisfies the constraints of Eq.(14). Once py
is computed, 771 can be inferred from Eq.(12). A
more efficient way is to sort py to increasing or-
der, The induced ordering gives the desired index
permutation .

To measure the quality of leaf ordering, we de-
fine the large-distance similarity ratio

rq = Jq(m)/Je(random),
and the adjacent pair similarity ratio
r1 = Ja=1(7)/J4=1(random),

where

Jq(random) = (s;;) E i — 512, (sij) = E sij/n’.
ij ij

and Jy—1(random) = (s;;)(n — 1), where n — 1 ac-
counts for the number of adjacent pairs on the or-
dering. r; includes all pairs of distances, n — 1 ad-
jacent pairs and (n — 1)(n — 2)/2 pairs with d > 1,
and rg is dominated by large distance pairs (thus
the name large-distance similarity ratio). If the
dataset is randomly permuted, we expect rqy ~ 1
and 71 ~ 1, which can be easily verified. As the
leaf ordering is improved, the large-distance simi-
larity ratio ry will decrease while the adjacent pair
similarity ratio r; will increase. For the 88 tissue
samples in the lymphoma dataset, we obtained

rqg = 0.18, 7 = 3.39.
Thus the large-distance similarities are reduced about
a factor of 1/0.18 = 5.6 from random ordering
and the adjacent pair similarities increase by 239%.
The results of optimal leaf ordering on the lym-
phoma dataset is shown in Figure 6. Note that
we can also reorder genes by first computing gene-
gene similarity using Pearson correlation (see §3)
and then ordering them using the same method.
This is done in Figure 6.

20 40 60 80

Figure 6: Optimal leaf node ordering of the lym-
phoma dataset: 88 tissue samples with 200 genes.
(A) Data are displayed as the original order from
Alizadeh et al [1]. (B) Both tissue samples and
genes are ordered according to Jy objective com-
puted from Eq.(15).



7.3 Preserving cluster structure

In the above distance-sensitive ordering heuristic,
our main goals are (i) to maximize the similari-
ties on adjacent pairs of nodes and (ii) to minimize
similarities on large distance pairs. However, these
considerations do not take into account the clus-
ter structure — it sometimes occurs that nodes of
a cluster are not consecutively ordered, and nodes
from another cluster could mix in between.

Here we propose a method to take this into ac-
count in leaf ordering. Qur approach is not to mod-
ify the J; objective. Instead, we modify the simi-
larity matrix with the following considerations: (1)
preserve local ordering within each cluster, while
(2) enforce nodes within a cluster to stay together.
The first consideration implies that similarity be-
tween nodes of a cluster, relatively, should remain
unchanged. The second consideration suggest we
reduce the similarities between different clusters
(or equivalently, increase within-cluster similarities
uniformly). The following re-weighting achieves
both goals:

(16)

where ¢; is the cluster id of node 7. a > 0is a
parameter that adjusts how much we increase the

gl] = 82](1 ‘I‘ OL(SC“CJ)

within-cluster similarity. If @ > 1, clusters will
become well separated. Thus a ~ 1 is good choice.

In Fig.7, we show the effects on modifying the
leaf order that preserves the cluster structure for
the 88 sample dataset. We set @ = 1 in Eq.(16).
The cluster structure is 6-class structure discovered
in Figure 5. One can see that the cluster structure
is preserved in the leaf ordering.

8 Discussions

The main contributions of this work are two fold:
(1) we introduce the min-max cut hierarchical di-
visive clustering algorithm and show it produces
good cluster results on the gene expression dataset
with large number of classes. (2) we introduce a
fast and effective leaf nodes ordering method for
tissue samples and genes that maximize similar-
ities on adjacent nodes and minimize similarities
on large distance pairs of nodes. A simple modi-

®)

(G

8 9

1 2 3 4 5 6 7

Figure 7: Leaf node ordering that preserves clus-
ter structure. The cluster ids (C1, C4, C5, C6, C7,
C9) for each sample are color coded. (A) Original
ordering computed from Eq.(15). There are sev-
eral samples from different clusters mix together.
(B) The modified ordering computed with the sim-
ilarity matrix modified according to Eq.(16). The
cluster structure is preserved.

fication of the method leads to leaf ordering that
also preserves cluster structure.

This work also demonstrate that the well-known
statistic methods such as F-statistic test and PCA
are quite useful in gene expression analysis. The
F-statistic is effective in gene selection. PCA is
effective in gaining initial knowledge of the cluster
structure of the dataset. PCA has been used in [2]
for different goals, and is recently criticized [26] for
not being effective in cluster analysis.

Our clustering results on lymphoma dataset also
reveals some difference in class labeling of several
tissue samples. This needs to be more carefully
studied. More details and analysis results on the
lymphoma dataset will be collected in a website
(www.nersc.gov/~cding/lymphoma).
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